智能照明系统APP-本地串口
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
LightingSystemApp-serial/.svn/pristine/3f/3fcf76002047acebbed4fabf992...

356 lines
13 KiB

/*
Ported to JavaScript by Lazar Laszlo 2011
lazarsoft@gmail.com, www.lazarsoft.info
*/
/*
*
* Copyright 2007 ZXing authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
import Version from './version';
import {AlignmentPatternFinder} from './alignpat';
import GridSampler from './grid';
import {FinderPatternFinder} from './findpat';
function PerspectiveTransform(a11, a21, a31, a12, a22, a32, a13, a23, a33) {
this.a11 = a11;
this.a12 = a12;
this.a13 = a13;
this.a21 = a21;
this.a22 = a22;
this.a23 = a23;
this.a31 = a31;
this.a32 = a32;
this.a33 = a33;
}
PerspectiveTransform.prototype.transformPoints1 = function(points) {
var max = points.length;
var a11 = this.a11;
var a12 = this.a12;
var a13 = this.a13;
var a21 = this.a21;
var a22 = this.a22;
var a23 = this.a23;
var a31 = this.a31;
var a32 = this.a32;
var a33 = this.a33;
for (var i = 0; i < max; i += 2) {
var x = points[i];
var y = points[i + 1];
var denominator = a13 * x + a23 * y + a33;
points[i] = (a11 * x + a21 * y + a31) / denominator;
points[i + 1] = (a12 * x + a22 * y + a32) / denominator;
}
};
PerspectiveTransform.prototype.transformPoints2 = function(xValues, yValues) {
var n = xValues.length;
for (var i = 0; i < n; i++) {
var x = xValues[i];
var y = yValues[i];
var denominator = this.a13 * x + this.a23 * y + this.a33;
xValues[i] = (this.a11 * x + this.a21 * y + this.a31) / denominator;
yValues[i] = (this.a12 * x + this.a22 * y + this.a32) / denominator;
}
};
PerspectiveTransform.prototype.buildAdjoint = function() {
// Adjoint is the transpose of the cofactor matrix:
return new PerspectiveTransform(this.a22 * this.a33 - this.a23 * this.a32, this.a23 * this.a31 - this.a21 * this.a33, this.a21 * this.a32 - this.a22 * this.a31, this.a13 * this.a32 - this.a12 * this.a33, this.a11 * this.a33 - this.a13 * this.a31, this.a12 * this.a31 - this.a11 * this.a32, this.a12 * this.a23 - this.a13 * this.a22, this.a13 * this.a21 - this.a11 * this.a23, this.a11 * this.a22 - this.a12 * this.a21);
};
PerspectiveTransform.prototype.times = function(other) {
return new PerspectiveTransform(this.a11 * other.a11 + this.a21 * other.a12 + this.a31 * other.a13, this.a11 * other.a21 + this.a21 * other.a22 + this.a31 * other.a23, this.a11 * other.a31 + this.a21 * other.a32 + this.a31 * other.a33, this.a12 * other.a11 + this.a22 * other.a12 + this.a32 * other.a13, this.a12 * other.a21 + this.a22 * other.a22 + this.a32 * other.a23, this.a12 * other.a31 + this.a22 * other.a32 + this.a32 * other.a33, this.a13 * other.a11 + this.a23 * other.a12 + this.a33 * other.a13, this.a13 * other.a21 + this.a23 * other.a22 + this.a33 * other.a23, this.a13 * other.a31 + this.a23 * other.a32 + this.a33 * other.a33);
};
PerspectiveTransform.quadrilateralToQuadrilateral = function(x0, y0, x1, y1, x2, y2, x3, y3, x0p, y0p, x1p, y1p, x2p, y2p, x3p, y3p) {
var qToS = this.quadrilateralToSquare(x0, y0, x1, y1, x2, y2, x3, y3);
var sToQ = this.squareToQuadrilateral(x0p, y0p, x1p, y1p, x2p, y2p, x3p, y3p);
return sToQ.times(qToS);
};
PerspectiveTransform.squareToQuadrilateral = function(x0, y0, x1, y1, x2, y2, x3, y3) {
var dy2 = y3 - y2;
var dy3 = y0 - y1 + y2 - y3;
if (dy2 == 0.0 && dy3 == 0.0) {
return new PerspectiveTransform(x1 - x0, x2 - x1, x0, y1 - y0, y2 - y1, y0, 0.0, 0.0, 1.0);
} else {
var dx1 = x1 - x2;
var dx2 = x3 - x2;
var dx3 = x0 - x1 + x2 - x3;
var dy1 = y1 - y2;
var denominator = dx1 * dy2 - dx2 * dy1;
var a13 = (dx3 * dy2 - dx2 * dy3) / denominator;
var a23 = (dx1 * dy3 - dx3 * dy1) / denominator;
return new PerspectiveTransform(x1 - x0 + a13 * x1, x3 - x0 + a23 * x3, x0, y1 - y0 + a13 * y1, y3 - y0 + a23 * y3, y0, a13, a23, 1.0);
}
};
PerspectiveTransform.quadrilateralToSquare = function(x0, y0, x1, y1, x2, y2, x3, y3) {
// Here, the adjoint serves as the inverse:
return this.squareToQuadrilateral(x0, y0, x1, y1, x2, y2, x3, y3).buildAdjoint();
};
function DetectorResult(bits, points) {
this.bits = bits;
this.points = points;
}
export default function Detector(image) {
this.image = image;
this.resultPointCallback = null;
}
Detector.prototype.sizeOfBlackWhiteBlackRun = function(fromX, fromY, toX, toY) {
// Mild variant of Bresenham's algorithm;
// see http://en.wikipedia.org/wiki/Bresenham's_line_algorithm
var steep = Math.abs(toY - fromY) > Math.abs(toX - fromX);
if (steep) {
var temp = fromX;
fromX = fromY;
fromY = temp;
temp = toX;
toX = toY;
toY = temp;
}
var dx = Math.abs(toX - fromX);
var dy = Math.abs(toY - fromY);
var error = -dx >> 1;
var ystep = fromY < toY ? 1 : -1;
var xstep = fromX < toX ? 1 : -1;
var state = 0; // In black pixels, looking for white, first or second time
for (var x = fromX, y = fromY; x != toX; x += xstep) {
var realX = steep ? y : x;
var realY = steep ? x : y;
if (state == 1) {
// In white pixels, looking for black
if (this.image.data[realX + realY * this.image.width]) {
state++;
}
} else {
if (!this.image.data[realX + realY * this.image.width]) {
state++;
}
}
if (state == 3) {
// Found black, white, black, and stumbled back onto white; done
var diffX = x - fromX;
var diffY = y - fromY;
return Math.sqrt((diffX * diffX + diffY * diffY));
}
error += dy;
if (error > 0) {
if (y == toY) {
break;
}
y += ystep;
error -= dx;
}
}
var diffX2 = toX - fromX;
var diffY2 = toY - fromY;
return Math.sqrt((diffX2 * diffX2 + diffY2 * diffY2));
};
Detector.prototype.sizeOfBlackWhiteBlackRunBothWays = function(fromX, fromY, toX, toY) {
var result = this.sizeOfBlackWhiteBlackRun(fromX, fromY, toX, toY);
// Now count other way -- don't run off image though of course
var scale = 1.0;
var otherToX = fromX - (toX - fromX);
if (otherToX < 0) {
scale = fromX / (fromX - otherToX);
otherToX = 0;
} else if (otherToX >= this.image.width) {
scale = (this.image.width - 1 - fromX) / (otherToX - fromX);
otherToX = this.image.width - 1;
}
var otherToY = Math.floor(fromY - (toY - fromY) * scale);
scale = 1.0;
if (otherToY < 0) {
scale = fromY / (fromY - otherToY);
otherToY = 0;
} else if (otherToY >= this.image.height) {
scale = (this.image.height - 1 - fromY) / (otherToY - fromY);
otherToY = this.image.height - 1;
}
otherToX = Math.floor(fromX + (otherToX - fromX) * scale);
result += this.sizeOfBlackWhiteBlackRun(fromX, fromY, otherToX, otherToY);
return result - 1.0; // -1 because we counted the middle pixel twice
};
Detector.prototype.calculateModuleSizeOneWay = function(pattern, otherPattern) {
var moduleSizeEst1 = this.sizeOfBlackWhiteBlackRunBothWays(Math.floor(pattern.X), Math.floor(pattern.Y), Math.floor(otherPattern.X), Math.floor(otherPattern.Y));
var moduleSizeEst2 = this.sizeOfBlackWhiteBlackRunBothWays(Math.floor(otherPattern.X), Math.floor(otherPattern.Y), Math.floor(pattern.X), Math.floor(pattern.Y));
if (isNaN(moduleSizeEst1)) {
return moduleSizeEst2 / 7.0;
}
if (isNaN(moduleSizeEst2)) {
return moduleSizeEst1 / 7.0;
}
// Average them, and divide by 7 since we've counted the width of 3 black modules,
// and 1 white and 1 black module on either side. Ergo, divide sum by 14.
return (moduleSizeEst1 + moduleSizeEst2) / 14.0;
};
Detector.prototype.calculateModuleSize = function(topLeft, topRight, bottomLeft) {
// Take the average
return (this.calculateModuleSizeOneWay(topLeft, topRight) + this.calculateModuleSizeOneWay(topLeft, bottomLeft)) / 2.0;
};
Detector.prototype.distance = function(pattern1, pattern2) {
var xDiff = pattern1.X - pattern2.X;
var yDiff = pattern1.Y - pattern2.Y;
return Math.sqrt((xDiff * xDiff + yDiff * yDiff));
};
Detector.prototype.computeDimension = function(topLeft, topRight, bottomLeft, moduleSize) {
var tltrCentersDimension = Math.round(this.distance(topLeft, topRight) / moduleSize);
var tlblCentersDimension = Math.round(this.distance(topLeft, bottomLeft) / moduleSize);
var dimension = ((tltrCentersDimension + tlblCentersDimension) >> 1) + 7;
switch (dimension & 0x03) {
// mod 4
case 0:
dimension++;
break;
// 1? do nothing
case 2:
dimension--;
break;
case 3:
throw "Error";
}
return dimension;
};
Detector.prototype.findAlignmentInRegion = function(overallEstModuleSize, estAlignmentX, estAlignmentY, allowanceFactor) {
// Look for an alignment pattern (3 modules in size) around where it
// should be
var allowance = Math.floor(allowanceFactor * overallEstModuleSize);
var alignmentAreaLeftX = Math.max(0, estAlignmentX - allowance);
var alignmentAreaRightX = Math.min(this.image.width - 1, estAlignmentX + allowance);
if (alignmentAreaRightX - alignmentAreaLeftX < overallEstModuleSize * 3) {
throw "Error";
}
var alignmentAreaTopY = Math.max(0, estAlignmentY - allowance);
var alignmentAreaBottomY = Math.min(this.image.height - 1, estAlignmentY + allowance);
var alignmentFinder = new AlignmentPatternFinder(this.image, alignmentAreaLeftX, alignmentAreaTopY, alignmentAreaRightX - alignmentAreaLeftX, alignmentAreaBottomY - alignmentAreaTopY, overallEstModuleSize, this.resultPointCallback);
return alignmentFinder.find();
};
Detector.prototype.createTransform = function(topLeft, topRight, bottomLeft, alignmentPattern, dimension) {
var dimMinusThree = dimension - 3.5;
var bottomRightX;
var bottomRightY;
var sourceBottomRightX;
var sourceBottomRightY;
if (alignmentPattern != null) {
bottomRightX = alignmentPattern.X;
bottomRightY = alignmentPattern.Y;
sourceBottomRightX = sourceBottomRightY = dimMinusThree - 3.0;
} else {
// Don't have an alignment pattern, just make up the bottom-right point
bottomRightX = (topRight.X - topLeft.X) + bottomLeft.X;
bottomRightY = (topRight.Y - topLeft.Y) + bottomLeft.Y;
sourceBottomRightX = sourceBottomRightY = dimMinusThree;
}
var transform = PerspectiveTransform.quadrilateralToQuadrilateral(3.5, 3.5, dimMinusThree, 3.5, sourceBottomRightX, sourceBottomRightY, 3.5, dimMinusThree, topLeft.X, topLeft.Y, topRight.X, topRight.Y, bottomRightX, bottomRightY, bottomLeft.X, bottomLeft.Y);
return transform;
};
Detector.prototype.sampleGrid = function(image, transform, dimension) {
var sampler = GridSampler;
return sampler.sampleGrid3(image, dimension, transform);
};
Detector.prototype.processFinderPatternInfo = function(info) {
var topLeft = info.topLeft;
var topRight = info.topRight;
var bottomLeft = info.bottomLeft;
var moduleSize = this.calculateModuleSize(topLeft, topRight, bottomLeft);
if (moduleSize < 1.0) {
throw "Error";
}
var dimension = this.computeDimension(topLeft, topRight, bottomLeft, moduleSize);
var provisionalVersion = Version.getProvisionalVersionForDimension(dimension);
var modulesBetweenFPCenters = provisionalVersion.DimensionForVersion - 7;
var alignmentPattern = null;
// Anything above version 1 has an alignment pattern
if (provisionalVersion.alignmentPatternCenters.length > 0) {
// Guess where a "bottom right" finder pattern would have been
var bottomRightX = topRight.X - topLeft.X + bottomLeft.X;
var bottomRightY = topRight.Y - topLeft.Y + bottomLeft.Y;
// Estimate that alignment pattern is closer by 3 modules
// from "bottom right" to known top left location
var correctionToTopLeft = 1.0 - 3.0 / modulesBetweenFPCenters;
var estAlignmentX = Math.floor(topLeft.X + correctionToTopLeft * (bottomRightX - topLeft.X));
var estAlignmentY = Math.floor(topLeft.Y + correctionToTopLeft * (bottomRightY - topLeft.Y));
// Kind of arbitrary -- expand search radius before giving up
for (var i = 4; i <= 16; i <<= 1) {
//try
//{
alignmentPattern = this.findAlignmentInRegion(moduleSize, estAlignmentX, estAlignmentY, i);
break;
//}
//catch (re)
//{
// try next round
//}
}
// If we didn't find alignment pattern... well try anyway without it
}
var transform = this.createTransform(topLeft, topRight, bottomLeft, alignmentPattern, dimension);
var bits = this.sampleGrid(this.image, transform, dimension);
var points;
if (alignmentPattern == null) {
points = [bottomLeft, topLeft, topRight];
} else {
points = [bottomLeft, topLeft, topRight, alignmentPattern];
}
return new DetectorResult(bits, points);
};
Detector.prototype.detect = function() {
var info = new FinderPatternFinder().findFinderPattern(this.image);
return this.processFinderPatternInfo(info);
};